UFPB - CCEN - Departamento de Matemática Séries & EDO - prof. MPMatos

GABARITO - 1A

01 CONSTRUINDO EXEMPLOS

(2,0 PONTOS)

Em cada caso, apresente um exemplo para ilustrar o que se pede.

(a) Uma sequência (a_n) alternada e convergente.

(Resp.
$$a_n = \frac{(-1)^n}{n}$$
; $\lim a_n = 0$.)

(b) Uma sequência (a_n) monótona e divergente.

(Resp.
$$a_n = n$$
; crescente com $\lim a_n = \infty$.)

(c) Uma série alternada $\sum_{n=1}^{\infty} (-1)^n b_n$, com soma S entre -2 e -1.

(Resp.
$$b_n = \frac{2}{n}$$
.)

(d) Uma sequência crescente (a_n) , tal que $2 \le a_n \le 3$, $\forall n$, e $\lim a_n = 3$.

(Resp.
$$a_n = 3 - \frac{1}{n}$$
)

02 TESTANDO A CONVERGÊNCIA

(2,0 PONTOS)

Com auxílio do critério de convergência especificado, decida sobre a convergência ou divergência das séries:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 (comparação)

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 (comparação) (b) $\sum_{n=1}^{\infty} \left[\ln n - \ln (2n+1) \right]$ (n-ésimo termo) (c) $\sum_{n=1}^{\infty} \frac{n!}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot (2n)}$ (razão)

(c)
$$\sum_{n=1}^{\infty} \frac{n!}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}$$
 (razão

SOLUÇÃO

(a) Convergente.

(Comparar com a série geométrica: $\sum_{n=1}^{\infty} \frac{1}{2n-1}$)

(b) Divergente.

$$(\lim a_n = \log(1/2) \neq 0)$$

(c) Convergente.

$$(L = \lim \left| \frac{a_{n+1}}{a_n} \right| = 1/2 < 1.)$$

03 FALSO (F) OU VERDADEIRO (V)

(**3,0** PONTOS)

Falso (F) ou verdadeiro (V)? Justifique as afirmações falsas.

- (a) (V) Se $a_n = (-1)^{n+1} 3/n$, então sup $(1 + 2a_n) = 3$.
- (b) (F) Se $|a_{n+1} a_n| \to 0$, então $\{a_n\}$ é convergente.

(Contraexemplo: $a_n = \sqrt{n}$)

(c) (V) Se $\{a_n\}$ converge para zero, então $\{(-1)^n a_n\}$ também converge para zero.

- (d) (V) Se $a_n > 0$, $\forall n$, e $\sum_{n=1}^{\infty} a_n$ é convergente, então $\sum_{n=1}^{\infty} \sqrt{a_n \cdot a_{n+1}}$ é convergente.
- (e) (F) Se $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ convergem, então $\sum_{n=1}^{\infty} a_n b_n$ converge. (Contraexemplo: $a_n = b_n = \frac{(-1)^n}{\sqrt{n}}$)
- (f) (V) Se $a_n > 0$, $\forall n$, e $\lim_{n \to \infty} (n^2 a_n) = 1$, então a série $\sum_{n=1}^{\infty} a_n$ converge.

04 CALCULANDO SOMAS INFINITAS

(3,0 PONTOS)

Calcule a soma das seguintes séries:

(a)
$$\sum_{n=2}^{\infty} (-1)^n 3^{2-n}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 4n + 3}$.

SOLUÇÃO

(a) Trata-se de uma Série Geométrica de razão r=-1/3. Após uma reindexação, obtemos:

$$\sum_{n=2}^{\infty} (-1)^n \left(\frac{1}{3}\right)^{n-2} = \left(\text{reindexar: } n-1=k\right) = \sum_{k=1}^{\infty} \left(-\frac{1}{3}\right)^{k-1} = \frac{1}{1+\frac{1}{3}} = \frac{3}{4}.$$

(b) Trata-se de uma série de encaixe e decompondo o termo geral em frações parciais, obtemos:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 4n + 3} = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+3} \right)$$

$$= \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{n+2} - \frac{1}{n+3} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{3} \right) = 5/12.$$

UFPB - CCEN - Departamento de Matemática Séries & EDO - prof. MPMatos

GABARITO - 1C

O1 <u>FALSO OU VERDADEIRO</u> Classifique as afirmações abaixo em falso (F) ou verdadeiro (V), justificando a resposta.

(a) (F) Se
$$a_n = \frac{1}{2n-7}$$
, então sup $(a_n) + \inf(a_n) = -1$. (sup $a_n + \inf a_n = 0$.)

(b) (F) A sequência de termo geral
$$a_n = (-1)^n + (2^n + 3^n)^{1/n}$$
 converge para 3. $((a_n)$ diverge.)

(c) (V) Se
$$a_n > 0$$
, $\forall n$, e $\lim_{n \to \infty} \left(\frac{1}{na_n} \right) = 0$, então $\sum_{n=1}^{\infty} a_n$ diverge. $\left(\lim \frac{a_n}{1/n} = \infty \Rightarrow \sum a_n \text{ diverge} \right)$

(d) (F) Se a sequência
$$(-1)^n a_n$$
 é convergente, então $\lim a_n = 0$. (Contraexemplo: $a_n = (-1)^n$)

O2 <u>CALCULANDO SOMAS INFINITAS</u> Em cada caso, calcule o valor da soma da série:

(a)
$$\sum_{n=3}^{\infty} \frac{2^{2n-1} \cos(n\pi + \frac{\pi}{3})}{6^{n-1}}$$
 (b) $\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt[n]{2}} - \frac{1}{\sqrt[n+1]{2}}\right)$.

SOLUÇÃO

(a) Como $\cos(n\pi + \frac{\pi}{3}) = (-1)^n/2$, vemos tratar-se de uma Série Geométrica de razão r = -2/3. Temos:

$$\sum_{n=3}^{\infty} \frac{2^{2n-1} \cos(n\pi + \frac{\pi}{3})}{6^{n-1}} = -\sum_{n=3}^{\infty} \left(-\frac{2}{3}\right)^{n-1} = -\left[-1 + \frac{2}{3} + \sum_{n=1}^{\infty} \left(-\frac{2}{3}\right)^{n-1}\right]$$
$$= \frac{1}{3} - \sum_{n=1}^{\infty} \left(-\frac{2}{3}\right)^{n-1} = \frac{1}{3} - \frac{1}{1 + \frac{2}{3}} = -4/15.$$

(b) Trata-se de uma série de encaixe. Temos:

$$\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt[n]{2}} - \frac{1}{\sqrt[n+1]{2}} \right) = b_2 - \lim b_n = 1/\sqrt{2}.$$

03 TESTANDO A CONVERGÊNCIA Investigue a convergência ou divergência das séries:

(a)
$$\sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n^3} + \left(1 - \frac{3}{n} \right)^n \right]$$
 (b) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(3n)!}$ (c) $\sum_{n=1}^{\infty} \frac{\sqrt[5]{4n^3}}{\sqrt{2n^3 + 6n}}$ (d) $\sum_{n=1}^{\infty} \frac{(-1)^n 5n}{n^2 + 2}$.

SOLUÇÃO

(a) Divergente. (Soma da série convergente
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$
 com a série divergente $\sum_{n=1}^{\infty} (1 - \frac{3}{n})^n$)

(b) Convergente. (Teste da Razão:
$$\lim \left| \frac{a_{n+1}}{a_n} \right| = \lim \left| \frac{(n+1)^2}{(3n+3)(3n+2)} \right| = \frac{1}{9} < 1$$
)

(c) Divergente. (Comparação Direta:
$$a_n \ge \frac{\sqrt[5]{n^3}}{\sqrt{9n^3}} = \frac{1}{3n^{9/10}} = b_n$$
)

(d) Convergente. (Critério de Leibniz:
$$b_n = \frac{5n}{n^2 + 2}$$
 tem limite 0 e decresce a partir de $n = 3$)