

6.1 Convergência Pontual & Convergência Uniforme

1. Estude o limite pontual das seguintes sequências de funções nos domínios indicados

(a)
$$\frac{x}{x+n}$$
, $x \ge 0$

(b)
$$\frac{nx}{1+n^2x^2}$$
, $x \in \mathbb{R}$

(b)
$$\frac{nx}{1+n^2x^2}$$
, $x \in \mathbb{R}$ (c) $n^2x(1-x)^n$, $0 \le x \le 1$

(d)
$$\frac{nx}{1+nx}$$
, $x \ge 0$

(e)
$$\frac{x^n}{1+x^n}$$
, $x \neq -1$

(d)
$$\frac{nx}{1+nx}$$
, $x \ge 0$ (e) $\frac{x^n}{1+x^n}$, $x \ne -1$ (f) $\frac{\cos(nx)}{1+nx}$, $x \ge 0$

(g)
$$x^n (1-x)^n$$
, $0 \le x \le 1$ (h) $n^2 x^2 e^{-nx}$, $x \ge 0$ (i) $x^n (1-x)$, $x \in \mathbb{R}$

(h)
$$n^2 x^2 e^{-nx}$$
, $x \ge 0$

(i)
$$x^n (1-x), x \in \mathbb{F}$$

2. Mostre que a convergência da sequência do Exercício 6.1(a) é uniforme em [0, a], a > 0, mas não é uniforme em $[0, +\infty)$.

3. Mostre que a convergência da sequência do Exercício 6.1(b) é uniforme em $[a, +\infty)$, a > 0. Idem para a sequência do Exercício 6.1(c).

4. Mostre que a convergência da sequência do Exercício 6.1(d) é uniforme em $[1+b,+\infty),\ b>0$, e em $\left[0,a\right],\,0 < a < 1,$ mas não é uniforme em $\left[0,1\right].$

5. Mostre que a convergência da sequência do Exercício 6.1(e) é uniforme em $[a, +\infty)$, a > 0, mas não é uniforme em $[0, +\infty)$. Idem para a sequência do Exercício 6.1(f)

6. Se $\{f_n\}$ e $\{g_n\}$ convergem uniformemente em D para f e g, respectivamente, e λ é uma constante, mostre que $\lambda f_n + g_n \to \lambda f + g$, uniformemente em D.

7. Considere a sequência $f_n(x) = x + 1/n$ e a função $f(x) = x, x \in \mathbb{R}$. Mostre que $||f_n - f||_{\infty} = 1/n$ e conclua que $\{f_n\}$ converge para f uniformemente em \mathbb{R} . Mostre também que a sequência $\{f_n^2\}$ não converge uniformemente em \mathbb{R} e deduza que o produto de sequências uniformemente convergentes pode não ser uniformemente convergente.

8. O exercício precedente pode ser generalizado assim: se p(x) é um polinômio de grau ≥ 1 , então a sequência de funções $f_n: \mathbb{R} \to \mathbb{R}$ dadas por $f_n(x) = p(x) + 1/n$ converge uniformemente em \mathbb{R} para p(x), porém $\{f_n^2\}$ não converge uniformemente em \mathbb{R} .

9. Se $\{f_n\}$ e $\{g_n\}$ convergem uniformemente em D para f e g, respectivamente, e f_n e g_n são funções limitadas em D, para cada n, mostre que a sequência $\{f_n\cdot g_n\}$ converge uniformemente em Dpara $f \cdot g$.

10. Seja $\{f_n\}$ uma sequência de funções definidas em D, com as seguintes propriedades:

- (i) $f_n \xrightarrow{u} f$, uniformemente em D.
- (ii) $\{f_n\}$ é uniformemente limitada, isto é, existe M > 0 tal que $|f_n(x)| \leq M, \forall n, \forall x \in D$.

Se g é uma função contínua no intervalo [-M, M], mostre que a composição $\{g \circ f_n\}$ converge uniformemente em D para $g \circ f$.

- 11. Se $g: E \to \mathbb{R}$ uniformemente contínua e $f_n \xrightarrow{u} f$ em D, com $f(D) \subseteq E$ e $f_n(D) \subseteq E$, $\forall n$, mostre que $g \circ f_n \to g \circ f$ uniformemente em D. Investigue a convergência de $(f_n \circ g)$.
- 12. CRITÉRIO DE CAUCHY: Para que uma sequência de funções $f_n: D \to \mathbb{R}$ convirja uniformemente e necessário e suficiente que, para todo $\varepsilon > 0$ dado, exista um índice $n_0 \in \mathbb{N}$ tal que

$$m, n \ge n_0 \Rightarrow ||f_n - f_m||_{\infty} < \varepsilon.$$

- 13. Seja $f_n, f: D \to \mathbb{R}$ e suponha que $f_n \to f$ uniformemente em D. Mostre que a função f é limitada se, e somente se, existem K > 0 e $n_0 \in \mathbb{N}$ tais que $|f_n(x)| \le K$, $\forall x \in D$, $\forall n \ge n_0$.
- 14. Considere $f_n:[0,1]\to\mathbb{R}$, onde $f_n(x)=\sin(nx)/\sqrt{n}$. Mostre que $\{f_n\}$ converge uniformemente para zero, mas a sequência das derivadas $\{f'_n\}$ diverge em todo ponto do intervalo [0,1].
- 15. Mostre que a sequência de funções $f_n(x) = x + x^n/n$ converge uniformemente em [0,1] para uma função derivável, a sequência de derivadas converge pontualmente em [0,1], mas $\lim f'_n \neq [\lim f_n]'$.
- 16. Considere a sequência de funções $f_n(x) = nx(1-x)^n$, $0 \le x \le 1$. Mostre que $\{f_n\}$ converge pontualmente mas não uniformemente em [0,1] e, apesar disso, vale:

$$\int_{0}^{1} \lim f_{n}(x) dx = \lim \int_{0}^{1} f_{n}(x) dx.$$

- 17. Sejam $f_n, f: D \to \mathbb{R}$ funções contínuas em D. Se $f_n \xrightarrow{u} f$ em D, mostre que $f_n \xrightarrow{u} f$ em \overline{D} .
- 18. O Teorema de Bolzano-Weierstrass é um caso particular do Teorema de Arzelá-Áscoli?
- 19. Seja \mathcal{F} uma família de funções reais definidas no intervalo compacto [a,b]. Suponha que para cada $c \in [a,b]$ e $\varepsilon > 0$, existe um número positivo $\delta = \delta(c,\varepsilon)$ tal que se $x \in [a,b]$ e $|x-c| < \delta$, então $|f(x) f(c)| < \varepsilon$, $\forall f \in \mathcal{F}$. Mostre que a família \mathcal{F} é eqüicontínua.
- 20. Seja $\{f_n\}$ uma sequência de funções contínuas de $\mathbb{R} \to \mathbb{R}$ pontualmente convergente no conjunto \mathbb{Q} . Se a família $\mathcal{F} = \{f_n\}$ é eqüicontínua, mostre que $\{f_n\}$ é uniformemente convergente em \mathbb{R} .
- 21. No intervalo compacto [0,1], considere a sequência de funções $\{f_n\}$ definidas por:

$$f_n(x) = x^2 \left[x^2 + (1 - nx)^2 \right]^{-1}$$
.

Verifique que a sequência $\{f_n\}$ é uniformemente limitada, converge pontualmente para zero mas não possui subsequência uniformemente convergente. Note que $f_n(1/n) = 1, \forall n$.

- 22. Se uma sequência de funçõe limitadas for uniformemente convergente, mostre que ela é uniformemente limitada.
- 23. Considere a sequência de funções $f_n : \mathbb{R} \to \mathbb{R}$ definidas por $f_n(x) = \text{sen}^2(\pi/x)$, para $1/(n+1) \le$ $x \leq 1/n$ e $f_n(x) = 0$, caso contrário. Mostre que $\{f_n\}$ converge pontualmente em \mathbb{R} para uma função contínua, mas a convergência não é uniforme. Considere a série $\sum f_n$ para comprovar que a convergência uniforme não é consequência da convergência absoluta, mesmo que esta última se verifique para todo x.
- 24. Em qualquer intervalo limitado, verifique que a série

$$\sum_{n=1}^{\infty} \frac{(-1)^n \left(n+x^2\right)}{n^2}$$

converge uniformemente e, contudo, a convergência não é absoluta em ponto algum.

- 25. Verifique que a sequência $\{f_n : \mathbb{R} \to \mathbb{R}\}$, onde $f_n(x) = x(1 + nx^2)^{-1}$ converge pontualmente em \mathbb{R} para uma função f e que a relação $\lim f'_n(x) = f'(x)$ é falsa quando x = 0.
- 26. Seja f uma função real contínua em [0,1] tal que $\int_0^1 f(x) x^n dx = 0, n = 1, 2, 3, \cdots$. Use o Teorema Aproximação de Weierstrass para mostrar que $\int_0^1 f^2 = 0$ e daí conclua que $f \equiv 0$, em [0,1].
- 27. Seja $\{f_n\}$ uma sequência uniformemente limitada de funções integráveis em [a,b]. Mostre que a sequência de primitivas

$$F_n(x) = \int_a^x f_n(t) dt, \quad a \le x \le b,$$

possui uma subsequência uniformemente convergente em [a, b].

- 28. Suponha que $f_n \to f$ uniformemente em D e seja $\{x_n\}$ uma sequência em D com limite $x \in D$. Se f é contínua em x, mostre que $\lim f_n(x_n) = f(x)$.
- 29. TEOREMA DE DINI: Se uma sequência monótona de funções contínuas $\{f_n\}$ em [a,b] convergir para uma função contínua f em [a, b], então a convergência é uniforme.
- 30. Qualquer sequência equicontínua $\{f_n: [a,b] \to \mathbb{R}\}$ pontualmente convergente é uniformemente convergente. Você pode substituir o intervalo [a, b] por qualquer outro compacto da reta e o resultado continua válido.
- 31. Sejam $f_n, f: A \cup B \to \mathbb{R}$ tais que $f_n \stackrel{u}{\to} f$ em A e $f_n \stackrel{u}{\to} f$ em B. Mostre que $f_n \stackrel{u}{\to} f$ em $A \cup B$.

- 32. Mostre que as séries $\sum_{n=1}^{\infty} (-1)^n x^n (1-x)$ e $\sum_{n=1}^{\infty} x^n (1-x)^2$ convergem uniformemente em [0,1].
- 33. Verifique que a série $\sum_{n=0}^{\infty} x^n (1-x)$ converge pontualmente em (-1,1] para a função descontínua $f:(-1,1] \to \mathbb{R}$ dada por f(x)=1, se |x|<1 e f(1)=0.
- 34. PERMUTA DOS LIMITES: A sequência $\{\exp(-n^2x^2)\}$ converge pontualmente (mas não uniformemente em \mathbb{R}) para zero. De fato, um cálculo simples nos conduz a:
 - (i) $\lim_{n\to\infty} \left[\lim_{x\to 0} \exp\left(-n^2x^2\right) \right] = 1$ (ii) $\lim_{x\to 0} \left[\lim_{n\to\infty} \exp\left(-n^2x^2\right) = 0 \right]$.

Se uma sequência de funções contínuas $\{f_n:X\to\mathbb{R}\}$ convergir uniformemente, mostre que:

$$\lim_{n\to\infty} \left[\lim_{x\to a} f_n(x) \right] = \lim_{x\to a} \left[\lim_{n\to\infty} f_n(x) \right], \quad \forall \ a\in X\cap X'.$$

- 35. Seja $f: \mathbb{R} \to \mathbb{R}$ derivável, com derivada limitada. Defina $g_n: \mathbb{R} \to \mathbb{R}$ por $g_n(x) = f(x + 1/n)$ e mostre que a sequência $\{g_n\}$ é uniformemente convergente em \mathbb{R} .
- 36. Seja $f_n:[0,+\infty)\to\mathbb{R}$, definida por $f_1(x)=\sqrt{x}$ e $f_{n+1}(x)=\sqrt{x+f_n(x)}$.
 - (a) Mostre por indução que $f_n(x) < (1+x)^2 x$.
 - (b) Mostre que $\{f_n\}$ converge pontualmente em $[0, +\infty)$ para a função f dada por

$$f(x) = \begin{vmatrix} \frac{1}{2} + \frac{1}{2}\sqrt{1+4x}, & \text{se } x > 0 \\ 0, & \text{se } x = 0 \end{vmatrix}$$

- 37. Em cada caso, investigue a possibilidade de derivar a série termo a termo no domínio indicado.
 - (a) $f(x) = \sum_{n=1}^{\infty} \frac{\exp(nx)}{3^n}, -\infty < x < \ln 3.$
 - **(b)** $f(x) = \sum_{n=1}^{\infty} \frac{x^{2n}}{2n+1}, -1 \le x \le 1.$
 - (c) $f(x) = \sum_{n=1}^{\infty} \frac{x^{2n}}{2n+1}, -1 < x < 1.$